
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2000; 34: 425–448

A reduced-order approach for optimal control of fluids
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SUMMARY

In this article, a reduced-order modeling approach, suitable for active control of fluid dynamical systems,
based on proper orthogonal decomposition (POD) is presented. The rationale behind the reduced-order
modeling is that numerical simulation of Navier–Stokes equations is still too costly for the purpose of
optimization and control of unsteady flows. The possibility of obtaining reduced-order models that
reduce the computational complexity associated with the Navier–Stokes equations is examined while
capturing the essential dynamics by using the POD. The POD allows the extraction of a reduced set of
basis functions, perhaps just a few, from a computational or experimental database through an
eigenvalue analysis. The solution is then obtained as a linear combination of this reduced set of basis
functions by means of Galerkin projection. This makes it attractive for optimal control and estimation
of systems governed by partial differential equations (PDEs). It is used here in active control of fluid
flows governed by the Navier–Stokes equations. In particular, flow over a backward-facing step is
considered. Reduced-order models/low-dimensional dynamical models for this system are obtained using
POD basis functions (global) from the finite element discretizations of the Navier–Stokes equations.
Their effectiveness in flow control applications is shown on a recirculation control problem using blowing
on the channel boundary. Implementational issues are discussed and numerical experiments are pre-
sented. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The invention of micro-electromechanical systems and other fast micro-devices has generated
substantial interest in active control of fluid dynamical systems for the design of advanced fluid
dynamic technology. There is a lot of literature devoted to this actively growing field. For
example, in References [1–6,28], various control problems in viscous incompressible flows were
discussed. In References [7–11], experimental efforts were reported. However, efficient
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computational methodologies for use in on-line, real-time computations for partial differential
equation (PDE) based control design has seen little progress. In this article we discuss a
reduced-order method for PDE-based control using the proper orthogonal decomposition
(POD).

The solution of complex fluid dynamic equations using the available finite element, finite
volume, finite difference or spectral methods is, in general, not feasible for real-time estimation
and control. There are methods that would yield small degree-of-freedom models for the
purpose of control of PDEs. However, they do not adequately represent the physics of the
system and may be very sensitive to operating conditions, as they are based on input/output
data of a given system.

We examine the possibility of obtaining reduced-order models that reduce the computational
complexity associated with the Navier–Stokes equations while capturing the essential dynam-
ics by using the POD. The POD is a model reduction technique for complex non-linear
problems. It was first proposed by Karhunen [12] and Loeve [13], independently, and is
sometimes called the Karhunen–Loeve (K–L) expansion. Subsequently, it has been applied in
various applications. In Reference [14], the method was first called POD and it was used to
study turbulent flows. In Reference [15] another important progress was made and the method
of ‘snapshots’ was incorporated into the POD framework, which will be described in the sequel
to this paper. Other applications in turbulent flow simulations are given in References [16–22].

When discretizing non-linear PDEs using finite volume, finite difference, finite element or
spectral methods, one uses basis functions that have very little connection with the problem or
with the underlying PDEs. In some spectral methods, Legendre polynomials are used; in finite
element methods, piecewise polynomials are used and in finite difference methods, grid
functions are used. However, the POD uses basis functions that are generated from the
numerical solutions of the system or from the experimental measurements.

The essential idea is to generate a reduced set of basis functions for Galerkin representations
of PDEs. In other words, given an ensemble S={U(i)}i=1

N , consisting of N data vectors of
length Nx, the POD theory yields that we can find an orthonormal co-ordinate system
{V(i)}i=1

Nx such that the variance of the dataset in the co-ordinate directions becomes maximal.
Thus, when the Navier–Stokes equations are projected onto this base using a Galerkin
projection, one obtains a reduced-order model. The beauty of the POD is that it is a non-linear
model reduction approach and its mathematical theory is based on the spectral theory of
compact, self-adjoint operators.

Our goals here are first to apply the POD to simulate flow over a backward-facing step in
a two-dimensional channel; second, to apply the POD to an optimal control problem for this
configuration. Backward-facing step flow serves as a prototype for unsteady separated flow.
For high Reynolds numbers, the flow separates near the corner of the step and recirculation
appears downstream of the step. Such recirculation regions will strongly influence heat and
mass transfer [23]. We will formulate and numerically solve a recirculation control problem in
this configuration with the control action achieved through blowing of mass on a part of the
boundary.

The layout of the paper is as follows. In the remainder of this section we establish the
notation that will be used throughout the paper. In Section 2 we present the POD and its
properties. In Section 3 we present numerical simulations of the channel flow using a finite
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element method and compare it with POD reduced-order model solutions. In Section 4 we
formulate an optimal control problem in this configuration and apply the POD to derive a
reduced-order optimal control problem. We will also describe a numerical procedure to solve
such an optimal control problem. In Section 5 we present computational results for the
optimal control problem and we conclude the paper with Section 6.

1.1. Notations

We denote by L2(V) the collection of square-integrable functions defined on flow region
V¦R2 and we denote the associated norm by �� · ��0. Let H1(V)={6�L2(V): (6/(xi�L2(V), for
i=1, 2} and the norm on it be �� · ��1. We denote by L2(0, T ; H1) the space of all measurable
functions f : (0, T)�H1 such that �� f ��L 2(0,T; H 1)= (	0

T �� f ��12 dt)1/2B�. Vector-valued counter-
parts of these spaces are denoted by boldface symbols, e.g., H1(V)= [H1(V)]2. The L2(V) or
L2(V) inner product is denoted by ( · , · ).

2. THE POD SUB-SPACE

In order to illustrate the POD reduced basis sub-space and its construction, we assume for ease
of exposition that we are dealing with the semi-discrete non-linear problem

dy
dt

=E(y, t), t�R, y�X

where X is a finite-dimensional space. If the finite element method were used to solve the above
semi-discrete problem, X would be a piecewise polynomial space. However, the choice for the
POD reduced basis sub-space is different.

2.1. The POD

The underlying problem is to identify a structure in an ensemble of vector fields. Given an
ensemble of vector fields U(i), we seek to find a function F, which has a structure typical of
the members of the ensemble. One way to resolve the problem is to project the ensemble on
F, i.e., (U(i), F), to find F, which is as nearly parallel as possible. Thus, we want to maximize
(U(i), F) while removing the amplitude by normalizing it. It is now natural to look at a space
of functions F for which the inner-product (F, F) exists, i.e., F must be L2(V). In order to
include the statistics, we must maximize the expression

(F, U(i))
(F, F)1/2

in some average sense. Furthermore, as we are only interested in magnitude and not the sign,
we consider the mean of the square of the expression. That is, given an ensemble set

S={U(i): 15 i5N}
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seek a function F�L2(V), which gives the best representation of S in the sense that it
maximizes

1
N

%
N

i=1

�(U(i), C)�2
(C, C)

(2.1)

In other words, one seeks a function that has the largest mean square projection on the set S.
The maximization problem (2.1) can be cast in an equivalent eigenvalue problem. To see this,
define

KF=
1
N

%
N

i=1

&
V

U(i)(x)U(i)(x%)F(x%) dx% (2.2)

then

(KF, F)=
1
N

%
N

i=1

&
V

&
V

U(i)(x)F(x)U(i)(x%)F(x%) dx dx%=
1
N

%
N

i=1

�(U(i), F)�2

Moreover, we have

(KF, F)
(F, F)

=

1
N

%
N

i=1

�(U(i), F)�2

(F, F)
=l

Using the calculus of variations, we can find the maximum, as described below. Let f* be a
function that maximizes l. We can then write any other function as f*+ef %. Then l can be
written as

F(e)=
(KF*, F*)+e(KF%, F%)+e(KF%, F*)+e2(KF%, F%)

(F*, F*)+e(F*, F%)+e(F%, F*)+e2(F%, F%)
=l

Clearly, the maximum occurs when e=0 and thus (dF(e)/de)�e=0=0. This leads one to

(KF*, F%)=l(F*, F%)

It is now clear that the maximization problem (2.1) is the same as finding the eigenvalue of the
eigenvalue problem

KF*=lF* (2.3)

For practical calculations, the number of grid points N can be rather large, leading to a very
large eigenvalue problem. In order to save time in the computation of the eigenfunction, a
useful method was proposed in Reference [15], where it was called the method of snapshots. The
steps involved in the method axe first to take the ensemble set
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S={U(i): 15 i5N}

as solutions at N different time steps ti. Second to assume F has a special form in terms of the
original data as

F= %
N

i=1

wiU(i) (2.4)

where wi is to determined such that F maximizes Equation (2.1). The second step is useful
when the number of degrees of freedom required to describe U(i) is larger than the number of
snapshots N. If Equations (2.2) and (2.4) are introduced into Equation (2.3), we have

CW=lW

where

Ci, j=
1
N
&

V
U(i)(x)U( j)(x) dx and W=

Æ
Ã
Ã
Ã
È

w1

w2

�
wN

Ç
Ã
Ã
Ã
É

It follows from the fact that C is a non-negative Hermitian matrix, in that it has a complete
set of orthogonal eigenvectors

W1=

Æ
Ã
Ã
Ã
È

w1
1

w2
1

�
wN

1

Ç
Ã
Ã
Ã
É

, W2=

Æ
Ã
Ã
Ã
È

w1
2

w2
2

�
wN

2

Ç
Ã
Ã
Ã
É

, . . . , WN=

Æ
Ã
Ã
Ã
È

w1
N

w2
N

�
wN

N

Ç
Ã
Ã
Ã
É

along with a set of eigenvalues l1]l2] · · ·]lN]0. We can now write down the solutions
of Equation (2.1)

F1= %
N

i=1

wi
1U(i), F2= %

N

i=1

wi
2U(i), . . . , FN= %

N

i=1

wi
NU(i)

We also normalize these by requiring

(Wl, Wl)= %
N

i=1

wi
lwi

l*=
1

Nll

It is now easy to check
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(Fl, Fm)=
!1 l=m

0 l"m

This completes the construction of the orthonormal set {F1, F2, . . . , FN}.

2.2. Optimality of the basis functions

Here, we state a proposition regarding the POD, whose proof can be found in Reference [17].

Proposition 2.1
Let u(x, t)�L2((0, T)×V), and let {F1, F2, . . . , FN} be the POD basis elements and
{l1, . . . , lN} denote the corresponding set of eigenvalues. Let uN be the projection of u onto
span{F1, F2, . . . , FN} and

uN= %
N

i=1

bi(t)Fi(x)

Let {Ci}i=1
N , be an arbitrary orthonormal set such that

uN= %
N

i=1

ai(t)Ci

Then, the following hold:

(i) �bi(t)b j*(t)�=dijli

(ii) For every Nk5N, %
N

i=1

�bi(t)b i*(t)�= %
N

i=1

li] %
N

i=1

�ai(t)a i*(t)�

where � · � denotes ensemble averaging.

In essence, this proposition states that among all the linear combinations, the one correspond-
ing to the POD is the best in the sense that it will capture the most kinetic energy possible in
the average sense. Moreover, the coefficients bi are uncorrelated. Thus, the claim that the POD
expansion is efficient for modeling u(x, t).

We note here that the average kinetic energy is given by

E=
&

V
�uNuN*� dx= %

N

i=1

�bi(t)b i*(t)�= %
N

i=1

li

By utilizing the properties of the POD one can specify an energy level e to be captured and
then seek M�N such that

%
M

i=1

li

%
N

i=1

li

\e

Then the POD reduced basis sub-space is defined as VPOD=span{F1, F2, . . . , FM}.
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3. NUMERICAL SIMULATION OF A CHANNEL FLOW

In this section we will present numerical simulations for flow past a backward-facing step
channel using the finite element method and using the POD reduced-order model. In
particular, we will demonstrate the effectiveness of the POD reduced-order model in
simulations.

3.1. Finite element simulations

We consider two-dimensional viscous incompressible flow modeled by the Navier–Stokes
equations (uncontrolled system (Su)) given by

ut−
1

Re
Du+u·9u+9p=0

9 ·u=0, u(x, 0)=u0(x) (3.1)

in the domain V× [0, T ]. Here, the velocity u, the pressure p, the time t and the spatial variable
x are in non-dimensional form. The Reynolds number Re is defined as Re=ruaveL/m, where
r is the density, uave is the average inflow velocity, L is the channel height and m is the
kinematic viscosity. The geometry of the flow is given in Figure 1. At the inflow boundary, a
parabolic velocity profile is prescribed, i.e., u(x=0, 1

25y51)=24(y−1
2)(1−y), 6(x=0, 1

25
y51)=0, which produces a maximum inflow velocity of umax=

3
2 and an average velocity of

uave=1. On the solid walls, the no-slip condition (u=0) is imposed. At the outflow, the
pseudo stress-free condition

−p+
1

Re
(u
(x

=0 and
(6

(x
=0

is applied. The boundary condition at the outflow boundary is not physical but is used to
represent the flow in an unbounded region; see Reference [24].

3.1.1. Weak formulation. For the finite-dimensional approximation and for the subsequent
reduced-order approximation, we need a weak form of the state equations (3.1). A weak form
of Equations (3.1) has the form (see Reference [25] for similar problems)

Figure 1. Computational domain for the backward-facing-step channel problem.
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(ut+u·9u, v)+
1

Re
(9u, 9v)− (p, 9 ·v)=0

(9 ·u, q)=0, u(0)=u0 (3.2)

for all test functions (v, q)�V×L2(V), where

V={v�H1(V): v�G¯Gout
=0}

The state variables (u, p) for the problem are taken to be

u�L2(0, T ; H1(V)), u�Gin
=uin and u�G¯Gout¯Gin

=0

p�L2(V), u0�L2(V), uin�L2(0, T ; H1/2(Gin))

3.1.2. Finite dimensional approximations. In this section we introduce approximations of the
governing equations (3.2). We will use a finite difference scheme for time discretizations and
mixed finite elements for spatial discretizations.

To discretize Equations (3.2) in time, we use a semi-implicit, first-order scheme. We denote
the number of time steps by N. Let Dt=T/N, un=u(nDt) and pn=p(nDt).

We introduce the semi-implicit time discretization as follows. For n=1, . . . , N,
(un, pn)�H1×L2, such that un�Gin

=uin, un�G¯Gout¯Gin
=0, and

�un−un−1

Dt
+un−1 ·9un−1, v

�
+

1
Re

(9un, 9v)− (pn, 9 ·v)=0

(9 ·un, q)=0, u(0)=u0 (3.3)

for all (v, q)�V×L2(V). We note here that Equations (3.3) form a linear problem in each time
step as the non-linear term is treated fully explicitly.

To discretize Equations (3.2) in space, we employ a mixed finite element method. Let Jh be
a standard finite element triangulation of V, where h is the maximal length of all the
triangulation edges in Jh. Denoting as Pk the space of all polynomials of degree less than or
equal to k, and

Vh={vh� vh�C0(V( )×C0(V( ), vh�K�P2×P2 ÖK�Jh}

Ph={qh� qh�C0(V( ), gh�K�P1 ÖK�Jh}

we introduce the following fully discrete approximation of Equations (3.2). For n=1, . . . , N,
(uh

n, ph
n) such that uh

n�Gin
=uin, uh

n�G¯Gout¯Gin
=0 and

�uh
n−uh

n−1

Dt
+uh

n−1 ·9uh
n−1, vh

�
+

1
Re

(9uh
n, 9vh)− (ph

n, 9 ·vh)=0
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(9 ·uh
n, qh)=0, (uh

0, vh)= (u0, vh)

for all (vh, qh)�Vh×Ph. We note that the velocity and pressure are defined on the same
triangulation and on each triangle the degrees of freedom for quadratic elements are the
function values at the vertices and mid-points of each edge; the degrees of freedom for linear
elements are the function values at the vertices. This selection satisfies the so-called inf–sup
condition (see Reference [26]). We call the approximations using standard finite element basis
functions, such as quadratic or linear piecewise polynomials, by ‘full-order methods/discretiza-
tion’ and the ones using the POD by ‘reduced-order methods’.

In Figure 1, the downstream channel was defined to have unit height L with a step height
and inlet height L/2. The downstream channel length was taken as x=12L. The only
non-dimensional parameter of interest, the Reynolds number, is defined by Re=uaveL/n. For
comparison of channel flow simulation results, we have used the Reynolds number and
problem definition used in Reference [23].

The computational grid was non-uniform in both the streamwise and cross-flow co-ordinate
directions. A fine grid was used in regions where sharp variations in velocities were expected.
All the computations were done with a 45×45 grid and a time step size Dt=1/200 for the
Reynolds number 200. The flow separates at the corner of the step and a recirculation forms.
After the re-attachment of the lower wall eddy, the flow slowly recovers towards a fully
developed Poiseuille flow. The resulting steady flow field is given in Figures 2 and 3.

To verify the grid independence of the solution, the same problem was solved by halving the
grid size, i.e., using a 90×90 grid and a time step size Dt %=1/400. The results from both grids
agreed well and predicted the re-attachment point on the lower wall five step heights
downstream. This re-attachment length is in agreement with the results reported in References
[23,27] using a finite difference method. Typical computations require 0.02 CPU s per time step
on an IBM RISC 390, while the time integration goes for 2000 time steps.

Figure 2. Baseline/uncontrolled flow; velocity field at t=10.

Figure 3. Controlled flow; velocity field at t=10.
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3.2. POD simulations

Let u(x, t) be a given flow field and {u(x, tk)}k=1
N be the corresponding flow fields at N

different time steps tk, i.e., the ‘snapshots’. We next decompose u(x, t) as follows:

u(x, t)=um(x)+v(x, t)

where

um(x)=
1
N

%
N

k=1

u(x, tk)

We also define a spatial correlation matrix C with

Cij=
1
N
&

V
vivj dx

where vi=v(x, ti). Then, the POD basis vectors Fk are defined by

Fk= %
N

i=1

wi
kvi, k=1, . . . , N

where wi
k are the components of the eigenvector Wk of the eigenvalue problem

CW=lW

The computation using the POD takes the following algorithmic form:

Algorithm I

Step 1. Solve the state equation (3.3) at N different time steps and obtain ‘snapshots’ S.
Step 2. Compute the covariant matrix C. The matrix elements of C are given by

Cij=
1
N
&

V
vivj dx

for i, j=1, 2, . . . , N.
Step 3. Solve the eigenvalue problem CW=lW for the eigenvalues and eigenvectors.
Step 4. Obtain the POD basis vectors Fi, i=1, 2, . . . , N, using Fi=�k=1

N wk
i vk.

Step 5. Prescribe an energy level e in percentage and find M�N such that

%
M

i=1

li

%
N

i=1

li

\e
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Step 6. Define VPOD=span{F1, F2, . . . , FM} and expand the solution as
u=um+�i=1

M ai(t)Fi.
Step 7. Restrict the weak form of Equations (3.2) to VPOD and solve for
ai, i=1, 2, . . . , N.

3.2.1. POD reduced-order model. In this section, we consider the construction of the POD
reduced-order model using a Galerkin projection of the Navier–Stokes equations onto a space
spanned by the POD basis elements. The nature of the POD model is that it requires fewer
basis elements than those used to approximate the flow field. In fact the first M (�N) modes
carry most of the energy in the flow. Thus, one may specify an energy level e in percentage and
choose M such that

%
M

i=1

li

%
N

i=1

li

\e

and obtain a reduced-order model. In order to derive the reduced-order model, let us choose
M and expand the solution as

u(x, t)=um(x)+ %
M

i=1

ai(t)Fi(x) (3.4)

Restriction of the weak form (3.2) to VPOD results in

(ut+u·9u, Fi)− (p, 9 ·Fi)+
1

Re
(9u, 9Fi)+

�
pn−

1
Re
(u
(n

, Fi
�

Gout

=0 (3.5)

for all Fi�VPOD. At this point it is important to note that the POD basis elements Fi are
divergence-free, as flow is incompressible, and satisfy zero boundary conditions on G¯Gout.
Using these properties of Fi and the boundary condition on Gout, we see that the pressure term
and the boundary term vanish. Then Equation (3.5) reduces to

(ut+u·9u, Fi)+
1

Re
(9u, 9Fi)=0 (3.6)

for all Fi�VPOD. On substitution of Equation (3.4) into Equation (3.6) we obtain the following
non-linear evolution equation for the coefficients a(t):

a; =Aa+aTNa+e, a(0)=a0 (3.7)

where

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 425–448
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Aij= − (Fj ·9um, Fi)− (um ·9Fj, Fi)−
1

Re
(9Fj, 9Fi), i, j=1, . . . , M

Nikl= − (Fk ·9Fl, Fi), i, k, l=1, . . . , M

a0i= (u0, Fi), ei= − (um ·9um, Fi)−
1

Re
(9um, 9Fi), i=1, . . . , M

The system (3.7) is the reduced-order model of the uncontrolled system (Su).

3.2.2. Numerical results. The ‘snapshots’ for the reduced-order model were obtained by
simulating the uncontrolled system (Su) in the time interval [0, 10]. One hundred ‘snapshots’
were recorded at constant time intervals Dt* (Dt*=20Dt). The correlation matrix C was
formed with the aid of the finite element routine and the eigenvalue solve was carried out using
the RG sub-routine in the Fortran library EISPACK. The eigenvalue spectrum from the
correlation matrix C is shown in Figure 4(left). As shown in the figure, the eigenvalues quickly
decay and thus very few modes capture the essential energy in the flow.

The percentages of the full-order model energy captured by the POD reduced-order model
are given in Table I, which indicates only nine basis functions were enough to capture 99.9 per
cent of the energy of the full-order model. The reduced-order system was solved using the
backward Euler method with the time step Dt=1/200 and the resulting non-linear algebraic
system was solved using the Newton iterative method. Figures 5 and 6 are the channel flow
computations with ‘full solution’ and reduced-order solution at time t=10 for various stations
in the channel, which show excellent qualitative and quantitative agreement. In Table I we

Figure 4. Eigenvalues of the correlation matrix for the baseline and controlled case respectively.
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Table I. l1-norm difference between full order and POD reduced-order model solutions, condition
numbers of the mass matrix and percentage of full order model energy captured with M=3, 6, 9,

12, 15 and 20 POD basis functions.

3 6M 9 12 15 20

0.0013 0.001 0.000769 0.000359l1 Error 0.00029 0.00017
1.0 1.0Condition no. k 1.0 1.0 1.0 1.0

97.0 99.68 99.96Per cent of energy 99.997 99.999 99.9999

show that the l1-norm of the difference between solutions of the POD reduced-order and
full-order solutions decays as the dimension of the POD sub-space increases.

These simulations also showed good agreement at intermediate time levels. This indicates
that the reduced-order model also has good short-term prediction capabilities, which are

Figure 5. Comparison of full model and reduced model solutions; velocity components u and 6 at various
stations in the channel.

Figure 6. Comparison of full model and reduced model solutions; velocity components u and 6 at various
stations in the channel.
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essential for real-time flow control applications. We also found out, at least for the Reynolds
number case studied (Re=200), the use of several transients in the ensemble was not essential.
A single transient ensemble also gave very good results.

In order to highlight some of the other features of the POD reduced-order model, let us next
compare it with another reduced-order model based on the so-called reduced basis method
(RBM); see Reference [3]. In Reference [3] several ways to choose reduced basis sub-spaces are
discussed. Here, we consider the so-called Lagrange sub-space. The basis elements in the
Lagrange sub-space are snapshots of the problem obtained by solving system (3.1) using a
full-order method. Supposing {Ci}i=1

M+1 denotes the snapshots, the reduced-order sub-space is
defined as VRBM=span{Fi}i=1

M =span{Ci+1−Ci}i=1
M and the reduced-order solution is

defined as u=CM+1+�i=1
M aiFi. Once we have a reduced-order sub-space VRBM, system (3.1)

is projected onto VRBM to obtain a reduced-order model as in Section 3.4.
In algorithmic form, the RBM can be summarized in the following form:

Algorithm 2

Step 1. Solve the state equation (3.3) at M+1 different time steps and obtain ‘snapshots’
S={Ci}i=1

M+1.
Step 2. Define VRBM=span{Fi}i=1

M =span{Ci+1−Ci}i=1
M and seek the solutions as u=

CM+1+�i=1
M ai(t)Fi, where CM+1 account for the non-zero boundary values.

Step 3. Restrict the weak form (3.2) to VRBM and solve for ai, i=1, 2, . . . , M.

For the RBM simulations, we considered the channel flow problem described earlier. The
‘snapshots’ were obtained from the finite element simulations in the time interval [0, 10].
Eleven ‘snapshots’ were recorded at constant time intervals Dt* (Dt*=200Dt). In other words,
we simply take fewer ‘snapshots’ and apply Galerkin projection to obtain the RBM reduced-
order model. The reduced-order model simulations here used the same data as in the POD
reduced-order model simulations. In order to see whether the reduced-order approximation
becomes more accurate as the dimension increases we computed the l1-norm of the difference
between the reduced-order and full-order solutions. In Table II we present the l1-norm error
using M=3, 6 and 9 basis functions. We also report the condition numbers of the resulting
mass matrices. As seen, the condition number can increase dramatically with increasing basis
elements deteriorating convergence. However, the POD reduced-order model does not generate

Table II. l1-norm difference between full order and RBM reduced-order
model solutions and condition numbers of the mass matrix, with M=3, 6 and

9 basis functions.

M 63 9

l1 Error 0.00570.0327 0.0035
144 662.9210 220.09599.87Condition no. k
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such bad condition numbers as seen in Table I. Moreover, the POD allows easy generation of
linearly independent basis elements and more stable system matrices.

4. POD FOR OPTIMAL CONTROL OF FLUIDS

Minimization of the vorticity level in a flow domain is of interest in the control/delay of the
transition of flow past bluff bodies. Thus, in this section we formulate a related optimal
control problem in channel flow. The flow configuration considered is a backward-facing step
channel. As the Reynolds number is increased, the flow separates near the corner of the step.
The objective of the optimal control is to reduce the size of the recirculation and hence of the
length of re-attachment. The control action is effected through blowing on Gc. In terms of
boundary condition it takes the following form along the boundary Gc

u=c(t)g(x) on Gc× [0, T ]

where c(t): [0, T ]�R and g(x) represent respectively the temporal dependence and spatial
distribution of the fluid velocity on the boundary Gc ; see Reference [6]. The controlled system
(Sc) we consider is

ut−
1

Re
Du+u·9u+9p=0

9 ·u=0, u(x, 0)=u0(x)

in the domain V× [0, T ] and the following boundary conditions:

u= (24(y−1/2)(1−y), 0) on Gin× [0, T ]

pn−
1

Re
(u
(n

= (0, 0) on Gout× [0, T ]

u=c(t)g(x) on Gc× [0, T ]

u= (0, 0) on Gt@Gb@Gs× [0, T ]

The choice of cost functional or objective functional to meet the control objective of reducing
the recirculation is not trivial. Here we will consider a functional of the form

G(u)=
&

V
�9×u�2 dx

which corresponds to minimization of vorticity levels in the flow. The task is to find c(t) such
that the cost functional
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J(u, U)=
1
2
& T

0

[G(u)+b �U �2] dt

is minimized subject to the constraint that the flow fields satisfy the controlled system (Sc). By
including a term involving U one minimizes the rate of change of control velocity. The
parameter b\0 adjusts the relative weight of the two terms in the functional.

In order to obtain an ensemble of data for the controlled system (Sc) one cannot continue
to use the ‘snapshots’ of the uncontrolled system (Su). To obtain ‘snapshots’ for the controlled
system we take ‘snapshots’ with a specified control input (not necessarily optimal). In our
subsequent calculations, for example, we introduce

uc(x)= (uc 1
(x)−uc 0

(x))/(c1−c0)

where uc 1
is a steady flow with c(t)=c1=10 on Gc and uc 0

is that with c(t)=c0=0 on Gc.
Then the ‘snapshots’ are defined as

u(x, tk)−c(tk)uc(x)

and the basis functions Fj as defined in Algorithm 1 have zero boundary conditions on the
Dirichlet boundaries. The velocity expansion is defined as

u(x, t)=um(x)+c(t)uc(x)+ %
M

i=1

ai(t)Fi(x)=F0(x)+c(t)FM+1(x)+ %
M

i=1

ai(t)Fi(x) (4.1)

so as to automatically satisfy all the Dirichlet boundary conditions.

4.1. The reduced-order control problem

The reduced-order control system derivation is similar to that of the uncontrolled system in
Section 3.2.1. Inserting the expansion (4.1) into the Galerkin projection of the Navier–Stokes
equations, we obtain

a; +AX+XTNX−BU=0, a(0)=a0 (4.2)

where X= (1, a, C)T, U is the control, and we define the vector B, the stiffness matrix A and
the initial condition a0 as follows:

Bi= − (uc, Fi), i=1, . . . , M

Aij=
1

Re
(9Fi, 9Fj), i=1, . . . , M, j=1, . . . , M+1

a0i= (u0, Fi), i=1, . . . , M
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where u0 is the initial condition. Moreover, (XTNX)i=XTPiX, i=1, . . . , M, and

(Pi)kl= (Fk ·9Fl, Fi), i=1, . . . , M, k, l=1, . . . , M+1

The resulting reduced-order control system is

X: = f(X)+BU, X(0)=X0 (4.3)

where

f(X)= −AX−N(X)

Similarly from the cost functional J, we obtain

J(X, U)=
& T

0

�
l(X)+

b

2
U2n dt (4.4)

where

l(X)=
1
2

XTQX, Qi, j= (9×fi, 9×fj), i, j=0, . . . , M+1

The optimal control problem we consider is

Find U that minimizes J(X, U) subject to (4.3).

At this point one can employ a variety of numerical methods designed for finite-dimensional
non-linear optimal control problems, such as multiple shooting methods. Our method here is
based on Newton’s method for the necessary condition of optimality or the so-called
optimality system

X: (t)=F(X(t))−
1
b

BBTz(t), X(0)=X0

−z: =FX(X)Tz(t)+lX(X), z(T)=0

"
(4.5)

where z is the adjoint variable or the Lagrange multiplier. We further remark here that
finite-dimensional control systems like the one given above can also be obtained using, for
example, the finite element method as in Section 3. However, their size is too large for practical
control systems, whereas the POD-based reduced-order control systems are low-order and
maintain high fidelity. This makes our approach extremely attractive for optimal control
problems governed by PDEs.
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4.2. Approximation of the reduced-order control problem

In what follows we describe a general procedure for solving the two-point boundary value
problem (4.5). Instead of the direct approximation of (4.5), we will approximate (4.3) and (4.4)
using the Crank–Nicholson method for the constraint and the trapezoidal rule for the cost
functional. We obtain

Minimize JN= %
N

k=1

�1
2

(l(Xk−1)+l(Xk))+h(Uk)
n
Dt (4.6)

subject to

Xk−Xk−1

Dt
=

1
2

( f(Xk)+ f(Xk−1))+BUk, k=1, . . . , N (4.7)

where N Dt=T and X0=X0. The necessary optimality condition for (4.6) and (4.7) is given by

Xk−Xk−1

Dt
=

1
2

( f(Xk)+ f(Xk−1))−
1
b

BBTzk

−
zk+1−zk

Dt
=

1
2

fX(Xk)T(zk+zk+1)+lX(Xk)

Â
Ã
Ì
Ã
Å

(4.8)

for k=1, . . . , N and X0=X0 and zN+1=0, and the optimal control to Equations (4.6) and
(4.7) is given by

Uk= −
1
b

BTzk (4.9)

System (4.8)–(4.9), which is an approximation of Equation (4.5), is a sparse system of
non-linear equations in Xk, zk and can be solved using Newton’s method

F%(Y−)(Y+ −Y−)=F(Y−)

where Y= (X1, X2, . . . , XN, z1, z2, . . . , zN)

F(Y)=

Æ
Ã
Ã
Ã
È

Xk−Xk−1

Dt
−

1
2

( f(Xk)+ f(Xk−1))+
1
b

BBTzk

zk+1−zk

Dt
+

1
2

fX(XT)(zk+zk+1)+lX(Xk)

Ç
Ã
Ã
Ã
É
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and the Jacobian has the following form:

F%=
�A S

Q −AT

n
where A is block lower bi-diagonal, and S and Q are block diagonal with block size M. The
diagonal and sub-diagonal blocks of A are given by

Ak,k=
I
Dt

+
1
2

fX(Xk) and Ak+1,k= −
I
Dt

+
1
2

fX(Xk)

The block S is the constant

Sk,k=
1
b

BTB

and the diagonal block Q is given by

Qk,k=lXX(Xk)+
1
2

fX,X(Xk)T(zk+zk+1)

We note here that the vector Y= (X1, X2, . . . , XN, z1, z2 . . . , zN)T is rearranged to

Y= (X1, z1, X2, z2, . . . , XN, zN)

then each Newton step can be solved using a block tridiagonal algorithm.

4.3. Computational results

Here we present numerical results for the POD based control and compare its performance
with that of RBM. The flow configuration is chosen as the two-dimensional backward-facing
step. The control objective is to reduce the recirculation behind the step and thus the
re-attachment length. The cost functional is taken to be the vorticity functional defined earlier.

The control is effected through blowing on the lower quarter of the boundary Gc, Thus, we
consider

u=
!c(t)g(x) on 05y51

8

0 on 1
8By51

2

and g(x)= (30y(1
8−y), 0). The portion of the boundary Gc , where control is applied, is the line

segment between y=0 and y=0.125 at x=0.5. This choice here is motivated by the fact that
if one wants maximum influence in the flow, then the control has to be applied in that vicinity.
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4.3.1. Test I (POD). We present numerical results for the POD approach in solving the optimal
control problem at Re=200. Recall that the control problem we consider is

Minimize J(u, U)=
1
2
& T

0

[G(u)+b �U �2] dt

subject to

(ut+u·9u, Fi)+
1

Re
(9u, 9Fi)=0, i=1, . . . , M

where M is the number of POD modes and

u=um+c(t)uc+ %
M

i=1

ai(t)Fi(x)

The ‘snapshots’ for the reduced-order control system were obtained by employing a given
linear profile for c(t)= t and simulating the system (Sc) in the interval [0, 10]. A hundred
‘snapshots’ were recorded at constant time intervals Dt* (Dt*=20Dt). The eigenvalues of the
correlation matrix decay rapidly (Figure 4(right)). The initial state and control were given
prescribed values and the optimal control problem was solved using the algorithm described in
Section 4.2.

We carried out several simulations to study the performance of the controller. Here we
present only a sample of the results. The penalty parameter b was found to play a critical role
in the controller design. For b51 control oscillates at the beginning and the end of the time
interval. The amplitude of the oscillation increases as more weight is placed on achieving the
vorticity reduction by decreasing the parameter value b in the cost functional J. In other
words, oscillations increases as the rate of change of control U is increased (Figure 9), whereas
for b]50, control undershoots. With the values b=20, a smooth control was obtained.

The controlled flow fields with four, nine and 14 modes showed similar results and hence
only results with nine modes are presented. The flow fields presented in Figures 7 and 8 are u
components of the flow field u at different stations in the channel for the controlled and
uncontrolled cases with nine POD modes. As indicated by the controlled flow fields, separa-
tion has been effectively eliminated by the optimal blowing control. Significant reduction in the
recirculation bubble is seen. The re-attachment length has been reduced by more than 90 per
cent compared with the uncontrolled case.

4.3.2. Test II (RBM). We next present numerical results for the RBM approach. The
reduced-order solution is defined as

u=F0+c(t)FM+1+ %
M

i=1

ai(t)Fi
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Figure 7. The controlled and uncontrolled flow: u component velocity field.

Figure 8. The controlled and uncontrolled flow: u component of the velocity field.

Figure 9. Optimal control (POD) as function of non-dimensional time for different values of b : 1000
(dashed line), 20 (line), 10 (dotted line), 0.1 (dashed–dot line).
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where the test functions Fi, i=1, . . . , M are defined such that they are zero on all the
Dirichlet boundaries. The trial function F0 denotes a flow corresponding to a zero control and
FM+1 denotes a flow corresponding to non-zero values on the control part of the boundary Gc.
In the calculation we obtained Fi values as follows. First M ‘snapshots’ were recorded at
constant time intervals Dt* (=200Dt) with a prescribed linear profile c(t)= t in the time
interval [0, 10]. Then the test functions were defined as follows:

F0=uc 0

Fk=u(x, tk)−c(tk)uc−uc 0
, k=1, . . . , M

FM+1=uc

The time interval [0, T ], the time step Dt and the other data were all taken the same as in the
previous case.

We repeated the parameter study on the penalty parameter b to verify the findings in the
previous test. The results are presented in Figure 10, which show similar behavior. As in the
previous test, the oscillations increase as the rate of change of control U is increased. Whereas,
for b]50, control undershoots. With the values b=20, a smooth control was obtained.

The control distribution presented in Figure 10 and the controlled flow fields (not presented
here) all agree well with that of POD. This shows the ability of RBM to provide very good
controls with very few elements. However, RBM can be sensitive in terms of condition
numbers of the system matrices as one increases the number of basis functions in order to
improve convergence and accuracy.

Figure 10. Optimal control (RBM) as function of non-dimensional time for different values of b : 100
(dashed line), 20 (line), 10 (dotted line), 0.1 (dashed–dot line).
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5. CONCLUSION

In this article we have presented a reduced-order modeling approach for optimal control of
fluid flows. A reduced-order model suitable for control and which captures the essential
physics was developed using the POD. We have shown two different ways to define the
‘snapshots’: (i) solutions to the uncontrolled system at various time instances, (ii) solutions to
the controlled system with varying boundary control input. The former is used only for
simulation of the uncontrolled system as it may not produce a reduced-order model that is
representative of the control system. However, the latter approach leads more naturally to the
reduced-order control problem. Our computational investigations into the use of reduced-
order methods for control suggest promise. Significant computational savings were evidenced
in the test cases considered. In the RBM there is no systematic way to increase the level of
accuracy, and ill-conditioned system matrices can make it impossible to improve the accuracy,
whereas the POD provides a systematic way to improve the level of accuracy while maintaining
well-conditioned system matrices. However, even the POD may fail to effectively represent the
dynamics of the system as it merely provides an efficient way to represent the energy in the
ensemble data set. Whenever they can be effective they can provide significant performance
with substantially lower on-line computational resources.
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